
Journal of Biosphere, 5: 87-91, 2016  ISSN 2278 – 3342 

Crack Arrest Model for Cracked Piezoelectromagnetic Strip 

under Electromagnetic Yielding 

Vinay Arora
1
, Soniya

2
, Anupma Arora

3
 and Satish Kumar

1
* 

1
Department of Applied Sciences, PUSSGRC, Hoshiarpur, Punjab, India 

2
Department of Mathematics, S.S.V (P.G.) College, Hapur, Punjab, India 
3
Department of Chemistry, Govt. Degree College, Kathua, J&K, India 

Corresponding author:
 
satisdma@gmail.com 

Abstract: Crack arrest model for a piezoelectromagnetic strip under different magnetic and electrical yield 

conditions is proposed. The long narrow strip is cut along a transverse, internal, hairline straight crack. Infinite 

boundary of the strip is subjected to different sets of magnetic, mechanical and electrical load conditions. 

Consequently, the crack yields. A crack arrest is made possible by prescribing a magnetic, electric and 

mechanical load on rims of developed zones. Fourier integral transform is used to reduce the problem into dual 

integral equations. The solution of dual integral equations is then simplified numerically. Expressions are 

derived for energy release rate and load required to arrest developed zones.  
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1. Introduction 

The work on magnetoelectroelastic (MEE) fracture problem was started in the last century. The field 

is a natural extension of piezoelectric media since electricity and magnetism go in hand. Due to 

coupling effect of magneto, electro, and elastic fields, MEE materials become more popular than 

piezoelectric materials and serve as the excellent sensor, actuator and transducer. Wang and Shen [1] 

obtained energy release rate for a mode-III  magnetoelectroelastic media based on  the  concept of 

energy-momentum  tensor. Based on the extended Stroh formalism combined with complex variable 

technique, Green’s function is obtained for an infinite two-dimensional anisotropic MEE media 

containing an elliptic cavity which degenerates into a slit crack, by Jinxi et al. [2]. Sih and Song [3] 

proposed a model which showed that crack growth in a magnetoelectroelastic material could be 

suppressed by increasing the magnitude of piezomagnetic constants in relation to these for 

piezoelectricity. They [4] further derived energy density function for cracked MEE medium and 

studied the additional magnetic-strictive effect which could influence crack initiation as applied field 

direction is altered. Wang and Mai [5], addressed the problem of a crack in a MEE medium 

possessing coupled piezoelectric, piezomagnetic, and magnetoelastic effects. Wang and Mai [6] 

further extended above problem to calculate a conservative integral based on governing equations for 

MEE media. Gao et al. [7] investigated the fracture mechanics for an elliptic cavity in a MEE solid 

under remotely applied uniform in-plane electromagnetic and/or antiplane mechanical loadings. 

Reducing cavity into a crack they considered two extreme cases for impermeable crack and permeable 

crack cases. Hu and Li [8] obtained singular stress, electric and magnetic fields in MEE strip 

containing a Griffith crack under longitudinal shear for a crack situated symmetrically and oriented in 

a direction parallel to the edges of the strip. Tian and Rajapakse [9] obtained the solution for single, 
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multiple, and slowly growing impermeable cracks in a MEE solid using generalized edge dislocation 

theory. The solution for an elliptic cavity in an infinite two-dimensional MEE medium subjected to 

remotely apply uniform combined mechanical, electric, and magnetic loadings under permeable crack 

face boundary condition along the cavity of the surface had been obtained by Zhao et al. [10].  In this 

paper, we have proposed strip-yield-saturation-induction yield model for an unbounded cracked 

piezoelectromagnetic plate with electric and magnetic polarization in z-direction. Due to mechanical 

brittleness, it is assumed that developed mechanical yielding zone is the largest zone.  In the problem, 

we consider the case when developed saturation zone is smaller than induction zone. Fourier 

transform technique is employed to obtain the solution and derived closed form expressions for 

developed zone sizes and energy release rate. 

2. Formulation of the Problem 

A long, narrow piezoelectromagnetic ceramic strip occupies the region h x h− ≤ ≤ and y−∞ < < ∞ in 

xoy plane. The strip is thick enough in z-direction to allow the anti-plane shear state. The strip is poled 

along z-direction. Strip is cut along a thorough, finite, hairline, quasi-stationery, straight crack. The 

crack is symmetrically situated and transversely oriented with respect to the edges of the strip. The 

crack occupies the region 0y = , a x a− ≤ ≤ . The crack rims are stress and charge free. Also the edges 

of the strip are stress and charge free. The infinite boundary of the strip is prescribed uniform constant 

anti-plane shear stress and in-plane uniform constant unidirectional in-plane electric displacement and 

in-plane magnetic induction. Consequently, the crack rims open in self-similar fashion. Hence the 

crack rims open forming a strip-yield zone, a strip-saturation zone, and a strip-induction zone ahead of 

each tip of the crack. These strip zones are assumed to occupy the interval � ≤ |�| ≤ �, � ≤ |�| ≤ c and 

� ≤ |�| ≤ d on�-axis, respectively. To arrest the crack from further opening the developed saturation 

zone is subjected to normal, cohesive, unidirectional in-plane saturation limit electrical displacement,

y sD D= , the rims of the developed slide zones are subjected to cohesive anti-plane yield point shear 

stress yz sσ τ= while developed induction zone rims are prescribed in-plane, normal cohesive 

saturation limit of magnetic induction, �y = �s . Entire configuration is schematically depicted in 

figure 1. 

 

Figure 1:  Schematic presentation of configuration of the problem. 
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Boundary conditions of the problem are: 

(i) At infinite boundary of the strip i.e. for x h≤ and y → ∞  

  ( , )yz x yσ τ ∞= and ( , )yD x y D∞=   and ( , )yB x y B∞=  

(ii)  ( , 0) ( )yz sx H x aσ τ= −  , 0 x b≤ < ,        

(iii) ( , 0) ( )y sD x D H x a= −  , 0 x c≤ < , 

(iv) ( , 0) ( )y sB x B H x a= −  , 0 x d≤ < , 

(v)   ( ,0 ) ( ,0 )y yx xφ φ+ −=  , c x h≤ ≤ ,         

(vi)  ( ,0) 0zu x =   , b x h≤ ≤ , 

(vii) ( ,0 ) ( ,0 )y yx xψ ψ+ −=  , d x h≤ ≤ ,         

(vii) ( , ) 0xD h y =   ,for all y,          

(viii) ( , ) 0xz h yσ =   , for all y, 

(ix)   ( , ) 0yB h y =   , for all y. 

Since the problem is symmetric in nature, only first quadrant is considered. 

3. Fundamental Formulation  

As is well-known the constitutive equations for out-of-plane displacement components ( , , )iu x y z , 

in-plane electric field component ( , , )iE x y z and in-plane magnetic field component ( , , ),iE x y z

{ , , }i x y z= , may be written as 

 44 15 15, , ,xz z x x xc u e qσ φ ψ= + + ;     44 15 15, , ,yz z y y yc u e qσ φ ψ= + +  (1) 

 15 11 11, , ,x z x x xD e u dε φ ψ= − − ;      15 11 11, , ,y z y y xD e u dε φ ψ= − −  (2) 

 15 11 11, , ,x z x x xB q u d φ µ ψ= − − ;      15 11 11, , ,y z y y yB q u d φ µ ψ= − −  (3) 

where izσ , iD and iB {i=x,y} denotes the shear stress, electrical displacement and magnetic induction 

components, respectively.  

The governing equations for this case may be written as 

 2 0zu∇ =  ; 
2 0φ∇ = and 

2 0ψ∇ = . (4) 

These equations are solved using Fourier transform and taking inverse Fourier transform, solution 

may be written as 

 ( ) ( ) ( ) ( ) ( ){ }1 2
0

2
( , ) cos cosh siny

zu x y C e x C x y d a yαα α α α α α
π

∞ −
∞= + +∫  (5) 

 ( ) ( ) ( ) ( ) ( ){ }1 1 2
0

2
( , ) cos cosh sinyx y B e x B x y d b yαψ α α α α α α

π
∞ −

∞= + −∫  (6) 

( ) ( ) ( ) ( ) ( ){ }2 1 2
0

2
( , ) cos cosh sinyx y A e x A x y d c yαψ α α α α α α

π
∞ −

∞= + −∫  (7) 
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where Ci(α), ( )iB α and ( )iA α  (i=1, 2) are the arbitrary functions to be determined from the 

boundary conditions, of the problem.  

11 15 11 15
1 2

11 11 11

( )
( , ) ( , ) ( , )z

e d q
x y x y u x y

d

µψ φ
ε µ

−= −
−

 (8) 

and, 11 15 11 15
2 2

11 11 11

( )
( , ) ( , ) ( , )z

q d e
x y x y u x y

d

εψ ψ
ε µ

−= −
−

 (9) 

Solution of the Problem 

To obtain solution of the problem, equations (5) to (7) are simplified along with boundary conditions 

and after a long tedious calculation one arrives at the following explicit relations: 

 
2 12 20

2
( ) ( )sin( )

sinh( )

s
A A s sh ds

h s

αα
πα α α

∞
=

+∫   (10) 

 
2 12 20

2
( ) ( )sin( )

sinh( )

s
B B s sh ds

h s

αα
πα α α

∞
=

+∫   (11) 

 
2 12 20

2
( ) ( )sin( )

sinh( )

s
C C s sh ds

h s

αα
πα α α

∞
=

+∫   (12) 

 
2

1

1 3 0
0

( ) ( ) ( )
2

b
A J b d

πα ξ φ ξ αξ ξ= ∫    (13) 

 
2

1

1 2 0
0

( ) ( ) ( )
2

c
B J c d

πα ξ φ ξ αξ ξ= ∫   (14) 

 
2

1

1 1 0
0

( ) ( ) ( )
2

d
C J d d

πα ξ φ ξ αξ ξ= ∫    (15) 

For 1( )φ ξ  , 2 ( )φ ξ  and 3( )φ ξ following Fredholm integral equations of second kind are obtained: 

 ( ) 1

1 1 1 10
1

2

, 0

( ) ( , ) 2
sin 1

, 1
s

s

aa
d

k d B a
aa a

a d
d

ξ ξ
φ ξ φ η ξ η η ξξ τ ξπ

∞

−
∞

 < <
+ =    + − + −    ≤ <  

∫  (16) 

 ( ) 1

2 2 2 130

2

, 0

( ) ( , ) 2
1 sin

, 1s

ab
c

k d a a
ab

a c
c

ξ ξ
φ ξ φ η ξ η η ξξ τ ξπ

∞

−
∞

 < <
+ =    + − −    ≤ <  

∫  (17) 

  ( ) 1

3 3 3 140

2

, 0

( ) ( , ) 2
1 sin

, 1s

ac
b

k d a a
ac

a b
b

ξ ξ
φ ξ φ η ξ η η ξξ τ ξπ

∞

−
∞

 < <
+ =    + − −    ≤ <  

∫   (18) 

Where, 

2

11 15 11 11 11 11 15 11 15
1 2

11 11 11

( ( ) )d e d q d e
a

d

ε µ ε
ε µ
− + −=

−
 ;          2

2 11 11 11
a dε µ= −  

3 11 11s sa D d Bµ= − ;                                         
4 11 11s sa B d Dε= −  
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These equations are in turn solved numerically using quadrature methods. And hence problem 

is solved completely. 

Energy release rate. Energy release rate, G, is calculated using  

 
1

2

D E B H
III III I I I IG K K K K K Kτ γ = − −  . (19) 

 Where, , , , , ,D E B H
III III I I I IK K K K K Kτ γ represents various required intensity factors and are given by 

 

1 44

2 11

3 11

(1)

(1)

(1)

III

D
I

B
I

c dK

K c

K b

τ φ
π φ ε

φ µ

  
   =   
  

    

;                        
44 15 15

15 11 11

15 11 11

III III

E D
I I

H B
I I

K c e q K

K e d K

K q d K

γ τ

ε
µ

    
    = − −    
    − −    

 

So, we get ( ) ( ) ( )2 2 2

5 1 6 2 7 3(1) (1) (1)
2

G a a a
π φ φ φ = + +
   

(20) 

Where, 
5 44a c d= ;        ( ) ( )2 2

11 15 11 44

6 2

44 11 11 11

c q c
a

c d

ε µ
ε µ

 +
=  

−  

 and 
( ) ( )2 2

11 15 11 44

7 2

44 11 11 11

b e c
a

c d

µ ε
ε µ

 +
=  

−  
 

Conclusions 

The crack arrest model proposed above is more realistic model depiction of a situation for a cracked 

sensor/actuator/transducer with cracked narrow piezoelectromagnetic strip. The closed form 

expression is derived for energy release rate. Also the energy release rate behavior concludes that it is 

possible to slow down the crack growth. The results obtained can be applied to all ceramics sensors 

exhibiting the 6mm crystal symmetry along principal axis. 
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