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1. Introduction and Preliminaries 

Let � be the open unit disk in the complex plane ℂ, � its boundary, ��(�) 

�

 ��� =  

�

 �����the 

normalized area measure on�,�� the space of all bounded holomorphic functions on � with the 
norm ||�||� = ���� ∈�|�(�)|, �(�) the class of all holomorphic functions on �.  

Let 

��(�) = 
(� – �)

(
 � ���)
  ,  �, � ∈  �,  

That is, the involutive automorphism of � interchanging points � and 0.  

For " > 0, the family $%  of fractional Cauchy transforms is the collection of functions � ∈
�(�) which are represented as  

�(�) =∫ � 

(
� &�') (

d)(*)(� ∈ �).                                                                                                (1.1) 

for some ) ∈ ℳ, the space of all complex Borel measure on �. The principal branch is used in 
the power function in (1.1) and throughout the rest of the paper. The space $% is a Banach space with 
respect to the norm 

||�||,-
=  ./�0∈ℳ1||)||: �(�)3is given by 3(1.1)6 ,                                                                      (1.2) 

where 7|)|7 denotes the total variation of measure ). The space $% may also be written as $% =  

($%)� +  ($%)8 , where  ($%)� is isometrically isomorphic to ℳ/�9:

 , the closed subspace of ℳ of 

absolutely continuous measure and  ($%)8 is isomorphic to ℳ8,the closed subspace of ℳ of singular 
measures. Moreover, for � ∈  $%,  

|�(�)|  ≤  7|�|7
,-

/  (1 − |�|)%(� ∈ �).                                                                                    (1.3) 
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For more about these spaces see [1],[2], [3], [4], [6], [7], [8], [9], [10]. 

The logarithmic weighted space �>?
@ (�) =  �>?

@  consists of all  � ∈ �(�) such that 

||�| |
ABC

D =  ���' ∈�(1 −  |�|E)% |�(�)|F/ E

� |�|G<∞.  

With the norm ||. ||
ABC

D , the space�>?
@ is a Banach space. 

Let I ∈ �(�) andM be a holomorphic self-map of �. For a non-negative integer/, we define a 
linear operator NO,P

?  as follows: 

NO,P
?  � =  I. �(?) Q  M 

for f∈ �(�).The operator NO,P
?  is called a weighted composition operator. 

It is of interest to provide function- theoretic characterization of boundedness and compactness 
of  NO,P

?  from the space of fractional Cauchy transforms to different spaces of holomorphic functions. 

For some recent results in this area, see [11],[12], [13], and the references therein. In this paper, we 
characterize boundedness and compactness of weighted composition operators from fractional 
Cauchy transforms to logarithmic weighted - type spaces. Throughout the paper constants are denoted 
byR, they are positive and not necessarily the same at each occurrence. The notation � ≍ T means 
there is a positive constant Rsuch that � R⁄  ≤ T ≤ R�. 

2. Boundedness and compactness of  VW,X
Y ∶ [\ → ^_Y

`  

In this section, we characterize the boundedness and compactness of  NO,P
?  from the space of 

fractional Cauchy transforms to logarithmic weighted - type spaces. 

Theorem 1.Let " > 0, a > 0, / ∈ b ∪ 106, I ∈  �(�) and M a holomorphic self-map of �. Then 

NO,P
? ∶ $%  → �>?

@  is bounded if and only if  

d
  ≔  ���f∈����� ∈�
( 
� |�|G)- 

|
� f� (�)|Cg - |I(�)|F/ E

� |�|G <  ∞.                                                            (2.1) 

Proof: First suppose that (2.1) holds. Let � ∈  $% . Then there is a ) ∈ ℳ  such that 7|)|7 =

7|�|7
,-

and  

 � (�)=  ∫� 

(
� f��) -

�)(ζ) 

Thus, we have 

�?(�) =  "(" + 1)(" + 2) … … . (" + / − 1)∫�
( f�) C

(
� f��) Cg- �)(ζ).                                              (2.2) 

 Replacing �  in (2.2) by M(�) , using a known inequality and multiplying such obtained 
inequality by 

( 1 −  |�|E)% F/ E

� |�|G |I(�)|, we obtain 

|�? M(�) | ≤ "(" + 1)(" + 2) … … . (" + / − 1) ∫ �
( 
� |�|G)- 

7
� f� (�)7
Cg - |I(�)|F/ E


� |�|G �|)|(ζ) (2.3) 

≤ "(" + 1)(" + 2) … … . (" + / − 1)���f∈����� ∈�
( 1 −  |�|E)% 

|1 −  * ̅(�)|?n % |I(�)|F/
2

1 −  |�|E ∫��|)|(ζ) 
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= "(" + 1)(" + 2) … … . (" + / − 1)���f∈����� ∈�
( 
� |�|G)- 

|
� f� (�)|Cg - |I(�)|F/ E

� |�|G ||)|| 

from which it follows that  

( 1 −  |�|E)% |I(�)|F/ E

� |�|G |�? M(�)| ≤

"(" + 1)(" + 2). . (" + / − 1)���f∈����� ∈�
( 
� |�|G)- 

|
� f� (�)|Cg - |I(�)|F/ E

� |�|G 7|�|7

,-
. 

Taking the supremum over  � ∈  �, we get 

||NO,P
?  �||ABC

- = ���� ∈�|(NO,P
?  �)(z) | ≤ "(" + 1)(" + 2) … … . (" + / − 1)d
  7|�|7

,-
.            (2.4) 

Next suppose that  NO,P
? ∶ $%  → �>?

@  is bounded. 

 Let 

�f(�)=  ∫ � 

(
� f��) -

d)(*) , * ∈ �.                                                                                                    (2.5) 

Then  ||�f||o-
 = 1 and 

�f
?(�) =  "(" + 1)(" + 2) … … . (" + / − 1) (f� ) C

(
� f�(�)Cg-. 

From this and the boundedness of the operator NO,P
? ∶ $%  → �>?

@  , we have that  

||NO,P
? �f||

ABC
D ≤  ||NO,P

? ||
,-  →ABC

D , for every  * ∈ � and so  

"(" + 1)(" + 2) … … . (" + / − 1)���f∈����� ∈�
( 
� |�|G)- 

|
� f� (�)|Cg - |I(�)|F/ E

� |�|G ≤   ||NO,P

? ||
,-  →ABC

D . 

Taking supremum on both sides of above inequality, we have that (2.1) holds. 

Theorem 2. Let " > 0, a > 0, / ∈ b ∪ 106 , I ∈  � ( � ) , M  a holomorphic self-map of �  and 

�p(�) = ��(�) ∕ (1 - |�|E)E. Then NO,P
? ∶ $%  → �>?

@  is bounded if and only if  

r
 =  ���f∈����� ∈�∫�
( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) |I(�) | EF/ E

� |�|G(1- |��  (�)|E)E�p(�) < ∞.                     (2.6) 

Proof: First assume that (2.6) holds. Lets(�, (1 − |�|)  ∕ 2) = 1� ∈ �: |� − �| < (1 − |�|)  / 2 6. 
Since 

(1 − |�|E)% F/ E

� |�|G ≍  ( 1 − |�|E)% F/ E


� |�|G, for � ∈ s(�, (1 − |�|)  ∕  2). Using these two facts, 

(1.2) and the subharmonicity of the function  

t(z)=  
|O(�) | G

|
� f� P(�)| G(Cg-) 

we obtained 

r
  ≥  ���f∈����� ∈�∫v(�,(
�|�|) ∕ E)
|O(�) | G

|
� f� P(�)| G(Cg-) (1 -|��  (�)|E)E�p(�) 

            = ���f∈����� ∈�∫v(�,(
�|�|) ∕ E)
|O(�) | G

|
� f� P(�)| G(Cg-)
 (
 � |�|G)G

|
� ���|w ��(�) 

≥  ���f∈����� ∈�
( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) |I(�) | EF/ E

� |�|G = d


E.                           (2.7) 

Thus by theorem 1, the operator NO,P
? ∶ $%  → �>?

@  is bounded. 
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Next assume that the operator NO,P
? ∶ $%  → �>?

@  is bounded. By theorem 1, we have that (2.1) holds. 

From this, we have  

r
  ≤  d

E���� ∈�∫�

 (
 � |�|G)G

|
� ���|w ��(�) =  d

ER  <  ∞.                        (2.8) 

The asymptotic relation r
 ≍ d

E follows from (2.7) and (2.8). 

       Proceeding as in the proof of Theorem 2, we can easily prove the following lemma. 

We omit the proof. 

Lemma 1. Let" > 0, a > 0 and �p(�) = ��(�) ∕ (1 - |�|E)E. Then � ∈ �>?
@  if and only if  

x ∶=  ���� ∈�∫�|�(�)|E( 1 − |�|E)E% F/ E

� |�|G(1 -|��  (�)|E)E�p(�) <  ∞. 

 Moreover, the following asymptotic relationship holds  ||�||
ABC

D
E ≍ x. 

By (1.3), the unit ball T,-
 of $% is a normal family, a standard argument from Proposition 3.11 in [5] 

yields the proof of the next lemma. 

Lemma 2.Let " > 0, a > 0, / ∈ b ∪ 106, I ∈  �(�), M a holomorphic self-map of �. ThenNO,P
? ∶

$%  → �>?
@  is compact if and only if any bounded sequence 1�y6y ∈ℕ  in $%  converging to zero on 

compacts subsets of �, we have that limy→∞  ||NO,P
? �y||

ABC
D  = 0. 

Theorem 3.Let " > 0, a > 0, / ∈ b ∪ 106 , I ∈  � ( � ) , M  a holomorphic self-map of �  and 

�p(�) = ��(�) ∕ (1 - |�|E)E and NO,P
? ∶ $%  → �>?

@  is bounded. Then the following statements are 

equivalent: 

1. NO,P
? ∶ $%  → �>?

@ is bounded. 

2. d~ ∶=  ���� ∈�∫�( 1 −  |�|E)E% F/ E

� |�|G (1 - |��  (�)|E)E|I(�) | E�p(�) <  ∞ and 

lim� →
 ���f∈����� ∈�∫|P(�)|� �
( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) F/ E

� |�|G(1 - |��  (�)|E)E|I(�) | E�p(�) = 0. (2.9) 

Proof: (1) → (2). Since  NO,P
? ∶ $%  → �>?

@  is bounded, for (�) =  �?  ∕  /!  ∈  $% , we get 

d~ =  ���� ∈�∫�( 1 −  |�|E)E% F/ E

� |�|G(1 - |��  (�)|E)E|I(�) | E�p(�) <  ∞. 

Let �y (z) = �y, � ∈  ℕ.  It is norm bounded sequence in $%  converging to zero uniformly on 
compact subsets of D. Hence by Lemma 2, it follows that ||NO,P

? �f||
ABC

D  → 0 as � →  ∞. Thus for 

every � > 0, there is an �: ∈  ℕ such that for � ≥ �: , we have 

( ∏ (� − �)?
��: )E���� ∈�∫�|M(�)|E(y�?)( 1 −  |�|E)E% F/ E


� |�|G(1–|��(�)|E)E|I(�)|E�p(�) <  �. 

                   (2.10) 

From (2.9), we have that for each � ∈ (0,1) 

�E(y�?)( ∏ (� − �)?
��: )E���� ∈�∫|P(�)|� �( 1 −  |�|E)E% F/ E


� |�|G(1–|��(�)|E)E|I(�)|E�p(�) <  �.              

                                                                                                                                                         (2.11) 

Hence for  ∈ [ ∏ (� − �?
��: )

��
��C , 1] we have 
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���� ∈�∫|P(�)|� �( 1 −  |�|E)E% F/ E

� |�|G (1 – |��(�)|E)E|I(�)|E�p(�) <  �.           (2.12) 

Let � ∈  T,-
 and ��(�) = �(��), 0 < � < 1.  Then ��� : �� �
||��||,-

 ≤   ||�||,-
, �� ∈ $% , � ∈ 

(0, 1)and ��  → � uniformly on compacts subset of � as � → 1. The compactness of  NO,P
? ∶ $%  →

�>?
@  implies that  

lim�→
 || NO,P
? �� - NO,P

? �||
ABC

D  = 0. Hence for every  �  > 0, there is a  � ∈  (0,1) such that  

���� ∈�∫|P(�)|� �|��
? (M(�))−�?(M(�))|E( 1 −  |�|E)E% F/ E


� |�|G(1–|��(�)|E)E|I(�)|E�p(�) <  �.                                                                                                                             

                   (2.13) 

By inequalities (2.12) and (2.13), we have 

���� ∈�∫|P(�)|� �|�?(M(�))|E( 1 − |�|E)E% F/ E

� |�|G (1 – |��(�)|E)E|I(�)|E�p(�) 

≤ 2 ���� ∈�∫�|��
? (M(�)) - �?(M(�))|E( 1 − |�|E)E% F/ E


� |�|G (1 – |��(�)|E)E|I(�)|E�p(�) 

+  2 ���� ∈�∫|P(�)|� �|�?(M(�))|E( 1 −  |�|E)E% F/ E

� |�|G (1 –|��(�)|E)E|I(�)|E�p(�) 

 ≤ 2�(1 +  ||��
?||�

E ). 

Hence for every � ∈  T,-
, there is a  �:  ∈  (0,1), �: =  �:(�, �), such that for � ∈ (�:, 1) 

���� ∈�∫|P(�)|� �|�?(M(�))|E( 1 − |�|E)E% F/ E

� |�|G (1 – |��(�)|E)E|I(�)|E�p(�) <  �. 

From the compactness of  NO,P
? ∶ $%  → �>?

@ , we have that for every  �  > 0  there is a finite 

collection of functions �
, �E, �~, … … . , �o ∈ T,-
 such that for each� ∈  T,-

, there is a  � ∈
 11,2,3, … . .33�6 such that 

���� ∈�∫�|�?(M(�))−��
?(M(�))|E( 1 −  |�|E)E% F/ E


� |�|G(1–|��(�)|E)E|I(�)|E�p(�) <  �.       (2.14) 

On the other hand, from (2.14) it follows that if � ∶= ���
 ���o�� (��, �), then for � ∈  (�, 1) and all 

� ∈  11,2,3, … . .33�6 we have  

���� ∈�∫|P(�)|� ���
?(M(�)|)E( 1 − |�|E)E% F/ E


� |�|G(1–|��(�)|E)E|I(�)|E�p(�) <  �.                (2.15) 

From (2.14) and (2.15), we have that for � ∈  (�, 1) and every  � ∈  T,-
 

���� ∈�∫|P(�)|� �|�?(M(�))E( 1 − |�|E)E% F/ E

� |�|G(1– |��(�))E|E|I(�)|E�p(�) <  4�.             (2.16) 

Applying (2.16) to the functions �f (�) = 1 /  (1 - *z̅)%, * ∈  �,  we obtain 

���f∈ ����� ∈�∫|P(�)|� �
( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) F/ E

� |�|G (1–|��(�)|E)E|I(�)|E�p(�) < 4� / ("(" + 1 )(" +

2) … (" + / − 1))Efrom which (2.9) follows. 

(2)  ⇒ (1). Assume that 1�y6y ∈ℕ  is a bounded sequence in$% , say by r, converging to 0 uniformly 

on compacts of � as � →  ∞. Then by the Weierstrass’s theorem, �y
(o) also converges to 0 uniformly 

on compacts of �, for each � ∈  ℕ. We need to show that ||NO,P
? �y||

ABC
D  →  0 as � →  ∞ . For each 

� ∈ ℕ, we can find a  )y ∈  ℳ with 7|)y|7 = ||)y||,-
 such that 
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�y(�)=  ∫ � 

(
� f��) -

�)y(*)                                                                      (2.17) 

Differentiating (2.17) / times, composing such obtained equation by M , applying Jensen’s 
inequality,as well as the boundedness of sequence1�y6y ∈ℕ  , we obtain 

|�y
(?)(M(�)) | E  ≤ r("(" + 1 )(" + 2) … . . (" + / − 1))E∫ � 


|
� f� P(�)| G(Cg-)d|)y|(*).             (2.18) 

By the second condition in (2), we have that for every� > 0 there is an �
  ∈ (0,1) such that for� ∈
 (�
, 1) , we have  

���f∈����� ∈�∫|P(�)|� �
( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) F/ E

� |�|G  (1 –|��(�)|E)E|I(�)|E�p(�) <  �.                  (2.19) 

By (1.3), we have    

||NO,P
? �y||

ABC
D ≍  ���� ∈�∫|P(�)|� �|�y

(?)(M(�)|))E (1-

(�)|E)E|I(�)|E( 1 −  |�|E)E% F/ E

� |�|G �p(�)+���� ∈�∫|P(�)|� �|�y

(?)(M(�)|))E(1– 

 |��(�)|E)E|I(�)|E( 1 −  |�|E)E% F/ E

� |�|G �p(�). 

Using first condition in (2), (2.19), Fubini’s theorem and the fact that ���|�| � �|�y
(?)(�)|E <  �, 

for sufficiently large �,say� ≥  �:, we have that 

||NO,P
? �y||

ABC
D ≤ ���P(�)� � |�y

(?)(M(�))|E���� ∈�∫|P(�)|� �(1–

|��(�)|E)E|I(�)|E( 1 − |�|E)E% F/ E

� |�|G �p(�)+���� ∈�∫�∫|P(�)|� �

( 
� |�|G)G- 

|
� f� P(�)| G(Cg-) F/ E

� |�|G(1– 

|��(�)|E)E|I(�)|E�p(�)d|)y|(*) ≤  (d~  +  ∫�d|)y|(*))≤ (d~ + r) �. 

Since � is an arbitrary, the result follows by Lemma2. 

3. Acknowledgments. 

    The first author is thankful to Department of Science and Technology (DST) (India) for Inspire 
fellowship wide grant no.: DST/ Inspire fellowship/ 2013/ 281. 

References 

[1]  Bourdon, P., and Cima, J. A., On integrals of Cauchy-Stieltjes type. Houston J. Math. 14, 465-
474(1988). 

[2]  Choa, J. S., and Kim, H. O., Composition operators from the space of Cauchy transforms into 
its Hardy type subspaces. Rocky Mountain J. Math., 31, 95-113(2001). 

[3] Cima, J. A., and Matheson, A. L., Cauchy transforms and composition operators. Illinois J. 
Math.4, 58-69(1998). 

[4] Cima, J. A., and MacGregor, T. H., (1987). Cauchy transforms of measures and univalent 
functions. Lecture Notes in Math. 1275 (pp. 78- 88). Springer- Verlag. 

[5]  Cowen, C. C., and MacCluer, (1995).Composition operators on spaces of analytic functions, 
CRC Press Boca Raton, New York. 

[6]  Hibschweiler, R. A., Composition operators on spaces of Cauchy transforms. Contemp. Math. 
213, 57-63 (1998). 



Weighted Composition Operators- Krishan and Sharma                                                                                            

49 

 

[7]  Hibschweiler, R. A., Composition operators on spaces of fractional Cauchy 
transforms.Complex Anal. Oper. Theory 6, 897-911(2012). 

[8]  Hibschweiler, R. A., and MacGregor, T. H., Closure properties of families of Cauchy- Stieltjes 
transforms. Proc. Amer. Math. Soc. 105, 615-621 (1989). 

[9]  Hibschweiler, R. A., and MacGregor, T. H., Multipliers of families of Cauchy- Stieltjes 
transforms. Trans. Amer. Math. Soc. 331, 377-394 (1992). 

[10]  Hibschweiler, R. A., and MacGregor, T. H., Bounded analytic families of Cauchy-Stieltjes 
integrals. Rocky Mountain J. Math. 23, 187-202 (1993). 

[11]  Sharma, A. K., and Sharma, A., Integration operators from space of Cauchy integral 
transforms to the Dirichlet space. Adv. Pure Appl. Math. 5, 47-53 (2014). 

[12]  Sharma, Ajay K., Weighted composition operators from Cauchy Integral transforms to 
logarithmic weighted- type spaces. Ann. Funct. Anal. 4, 163-174 (2013). 

[13] Stevic, S., and Sharma, A. K., Composition operators from the space of Cauchy transforms to 
Bloch and the little Bloch-type spaces on the unit disk. Appl. Math. Comput. 217, 10187-
10194 (2011). 

 

 

 

 

 

 


