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Abstract

The set BC of bicomplex numbers is defined as BC = {21+ 29j : 21,22 € C(i)}, where ¢ and
j are independent imaginary units such that i = j2 = —1 and C(i) = {z + iy : z,y € R}.
In this paper we studied bicomplex function spaces and in particular we studied bicomplex
Orlicz spaces.

1 INTRODUCTION

In this section we summarize some basic properties already established for the bicomplex
numbers and also give some remarks and conclusions. The set BC of bicomplex numbers
is defined as

BC = {21 + 227 : 21,22 € C(d) },
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where i and j are independent imaginary units such that i2 = j%2 = —1 and C(i) = {z+iy :
x,y € R}. The product of any two units is commutative and satisfies

The set of bicomplex numbers, BC, can also be defined as

BC ={a+bi+cj+dk:a,b,cd R}

Under addition and multiplication defined as :

Z+W = (21 + 227) + (wy + waj)
= (z1 + w1) + (22 + w2)j
ZW = (21 + z27).(w1 + waj)
= (

ziwy — zows) + (z1wa + zown)j

BC becomes a commutative ring with unity and therefore a module over itself. Also since
the field C() is a subring of BC, therefore BC can also be seen as a vector space over C(i).
If we put 21 = 2 and zo = iy with z,y € R, then we obtain the set of hyperbolic numbers
D={z+yk:k*=1,z,y € R}.

Three types of conjugations can be defined on the set of bicomplex numbers. With Z =
z1 + 297, we define

() Z =721 4 Z2j

(i) Z' =2 — 225

(iii)) Z* = (7)* =7Z; — Z2].

1445
Each conjugate is additive, multiplicative and involute on BC. Let ¢ = ——;—J Then the
G i 1-4j : ;
1 - conjugate of e is given by el = Tj Any bicomplex number Z = 21 + 29 can be

uniquely expressed as Z = fBie + faef, where 81 = 21 — 29t and By = z; + 291 are in C(7)
The bicomplex numbers e and ef are hyperbolic numbers with
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e and e form the idempotent basis of bicomplex numbers. The uniqueness of idempotent

representation of bicomplex numbers allows the introduction of two projection operators
71, BC — C(i) and ma; : BC — C(i) defined as

m.4(Z) = mi(Bre + Boe') = B € C4) for I = 1,2,

with the property that m ;e + ?’{’2‘.5'61 = [ and both the projection maps are additive and
multiplicative, i.e. m;i(Z+ W) =m(Z)+ m (W) and m;(ZW) = mi(Z).m (W) for all
Z W eBC and [ =1,2.

1
For Z = z1e + zel € BC, the norm of Z is defined as ||Z|| = ﬁ\/ |z1]2 + |22/2.

Let A C BC. Also each z € A is of the form Z = zje + 29¢! where z; and 2z, are in
C(i). Corresponding to each A C BC, we associate two subsets of C(z), viz. A, and A_;
comprising of m; ;(Z) and 7y ;(Z), respectively, for all Z € A. Therefore A, = m; ;(A) = €A
and Ae_.* = ﬂ‘g‘_i(A) = e'fA.

Also let A1 and As be two sets defined as

A= {21 — 4221 21,22 € C(a‘,)}
Ay = {Z1 —iz9: 21,22 € (C(E)}

Then A; and Aj are copies of C(i) such that BC = Aje+ Agel. Therefore for any subset U
of BC, we have U = Uje+Use', where U; and Uy are subsets of A; and Aj respectively. It is
easy to show now that the characteristic functions xy is given by xr = X7, Xt €+ X0 X, €'

Remark 1.1. BC together with the norm defined above form a generalized normed alge-
bra, since ||Z.W] < %”ZHHW” Also since BC ~ R* and R* is complete with respect to
usual metrie, it follows that BC forms a generalized Banach algebra. The product of two
bicomplex numbers Z = 3z 1e+8z2¢e’ and W = ,-S’Wf,le—kﬁw.zeT can be written in the idem-
potent basis as Z.W = (/33,1e+;3z?2ef).(,.G’Wfie—i-ﬁw‘geT) = ;‘3311.,6’4,1,:_.164-62‘2..x’)’w,ge’f. Thus we
see that Z is invertible if and only if Bz # 0 # Bz and Z7! = ,Bglle—kﬁg‘}ze". A non zero
Z that does not have an inverse has the property that either 8z, =0or Bz2 = 0 and such
a Z is divisor of zero. The zero divisors make up the so called null cone NC which is closed
subset of BC. Therefore the set of invertible elements form an open subset of BC and every
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zero divisor is the limit point of the set of regular (invertible) elements in BC. The existence
of zero divisors in BC and the solution of polynomial equation emphasizes the following
difference. It comes out that the equation > p_; (ak +jbi)(Z = 21 + 225)% = 0,02 + b2 # 0
has n? solutions in BC whereas such type of equation in C has n solutions.

In [8], Hahn Banach Theorem, Closed Graph Theorem, Open Mapping Theorem and
Uniform Boundedness Principle for bicomplex Banach spaces were established. For various
properties of finite and infinite dimensional bicomplex Hilbert spaces and their applications
one can refer to [6], [15] and [16]. Recently D. Alpay, M. E. Luna - Elizarraras, M. Shapiro
and D. C. Struppa have written a clear and nice paper on bicomplex function analysis,
see [1].

2 Bicomplex function spaces and linear operators

In this section we define bicomplex valued function spaces and give some examples of
linear operators.

Let Q@ = (2,3, 1) be a o-finite complete measure space. If f = fie + foel, where f;
and fo are complex (C(7)) valued measurable functions on Q = (2,3, ), then f is a
bicomplex valued measurable function on 2. Therefore given any complex (C(i)) valued
function space (F(R),|.|a) we can always define a bicomplex version (F'(Q,BC), ||.||zc)
comprising of all functions of the type f = fie+ fael, where f; and fy are in (F(2), ||.||o)

and || f|lpc = %(Hf] I3 <+ “fz”?z)% The addition and scalar multiplication is defined on
(F(Q,BC), |.||lzc) as under:

f+9="(fie+ fe!) + (g1e + goc')
= (fi+ag1)e+ (f2+ go)el

and

a.f = (are + azel).(fie + faeh)
= (a1-f1)e + (az-fo)e',
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where f,g € F(Q,BC) and a € BC. One can easily see that the bicomplex version of
complex valued function space is complete if and only if the complex valued function
space itself is complete.

Example 2.1. Suppose L°(€2) denotes the linear space of all equivalence classes of complex
valued X-measurable functions on €2 and here any two functions that are equal p-almost
everywhere on ) are identified. Then the corresponding bicomplex measurable function
space LY(BC) comprises of all functions of the type f = fie + foel where fi, fo € L9(Q).

Example 2.2. Suppose L>(2) denotes the linear space of all equivalence classes of com-
plex valued Y-measurable essentially bounded functions on Q2 and here any two functions
that are equal p-almost everywhere on  are identified. Then the corresponding bicomplex
measurable function space L™= (BC) comprises of all functions of the type f = fie + foe'

1 y i
where fi, fa € L>(Q). Also ||fllpc = | fie + fael —E(Hfluéc + [1fl%)2 =

V%((esssu-pfl)g + (esssupfz)?)}
Similarly we can define LP(BC).
Lemma 2.3. (F(Q,BC),|.|sc) is complete if and only if (F(2), ||.]lq) is complete.
Proof. Suppose (F(£,BC),|.||sc) is complete and {f,} is a Cauchy sequence in
(F(£2), ||-lle)- Therefore for given € > 0 there exists r € N such that

[fn = fmllo < € (2.1)

for all n,m > r. Set f; = fne + 0e! € BC.Then

1 fn — FrllEc = II(fne + 0et) — (fme + 0e)|3¢
= |(fn — fim)e + Oel||F¢

1
= 5(llfn - Fmll)-
This together with (2.1) implies that {f,} is a Cauchy in (F(Q,BC), ||.|sc). Therefore

by completeness of (F(Q2,BC), ||.|[sc), there exists g = gie + goel in F(Q,BC) such that
f.; — g as n — oc. In order to complete the proof of direct part we need to show that
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fn— g1 asn — oo and g2 = 0. Now f,; — g in BC, therefore there exist a natural number
k such that

an - QHBC <€ (2.2)

for all n > k. Also one has

I fr — gllEc = |(Fae + 0et) — (g1 + gaet)|12c
= |(fu — g1)e+ (0 — g2)e'||3¢

1 .
= 5(1fn = il + 110 - g21l3).

This together with (2.2) implies the direct part. For converse, suppose (F(€),|.||q) is
complete and {f,, = fn1e+ fn2e!}22, is a Cauchy sequence in (F(Q2, BC), ||.|[sc). Therefore
for € > 0 there exists r € N such that

| fn — fullBe < € (2.3)

for all m,n > r. But

”f-m = fﬂ”ﬁgﬂc = ||(fm,1€ + fm,?f"i) = (fn,l'? + f-n,zﬁ‘r)”%ﬁ(:
= ”(fml - fn,l)e i (fm,‘z - fn,2)eT“ﬁC

1
= §(|[fm,1 - fn1||29 + ||fm,2 - .fn..‘2||?2)

Therefore by (2.3) we have || fmi — faillo < V2€ for i = 1,2 and for all m,n > r. This
implies that {f,;} is a Cauchy sequence in (F(Q), |.||q). Since (F(£2),|.||a) is complete,
therefore there exists f; in (F(2),||.||e) such that f,; — fi as n = oo for i = 1,2.
Therefore there exist natural numbers &y > 0 and ko > 0 such that

| fri — fillo < € (2.4)
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for all n > k;. Next we claim that f,, = f,1e+ fﬁ,,ge“ — f= fie+ fgeT as n — 0o. Now

I fn = FlEc = II(fa1e + fazel) — (fie + faeD)|3c
|(faa = fi)e + (fa2 — fo)elllge

= 5 = filla + a2 — l3)

<e?

for all n > k = max{ky, ka}. Therefore one has || f,, — fllzc < € for all n > k. Therefore f,
is convergent in (F'(2,BC), ||.|lsc)- [

Definition 2.4. A bicomplex linear operator T is a mapping from a bicomplex normed
linear space X to X such that T(az + fw) = aT(z) + BT (w), Va, 8 € BC and z,w € X.

Remark 2.5. A bicomplex linear operator T : X + X can always be written as T =
eT) 4+ el Ty = emii(T) + elmio(T), where mii(T)(l = 1,2) is defined as m;;(T") = 1.

Proposition 2.6. A linear operator T : X — X is invertible if and only if both T\ and
Ty are invertible and T~ = .2'_1“1_1 +elTt.

Proof. For proof see [3] [

Remark 2.7. Let T = Tie + Tye! be a bicomplex linear operator on (F(2,BC), ||.|sc).

(a) A bicomplex linear operator T is bounded on a bicomplex function space
(F(2,BC), ||.||[gc) if and only if both 77 and T, are bounded on the underlying
complex valued function space (F(Q2), ||.|ln), see [8].

(b) A bicomplex linear operator 7 is compact on a bicomplex function space
(F(£2,BC), ||.|lzc) if and only if both 77 and T» are compact on the underlying
complex valued function space (F(92), |.||q), see [2].

Next we define a bicomplex valued Orlicz space. An Orlicz function ¢ : [0,00) — [0, o]
is a convex function with ¢(0) = 0 and ¢(u) — 00 as u — oo such that ¢(u) < oo for
some 0 < u < oo. An Orlicz space L?(Q2) is defined as the space of all f € L°(Q) such
that I,(JAf|) is finite for some A > 0 and for any f € L?(Q), the Orlicz norm of f, || f||, is
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defined as the infimum of all A > 0 such that I¢(=§) < 1 where, I4(f) = |, ¢(|f]) du. The
Orlicz space L?(f2) is a Banach space with Orlicz norm ||.| 4.

The bicomplex Orlicz space L?(BC) is defined as
L*(BC) = {fie + fae! : fi, f2 € L?(u)}.
Also the fact that the norm ||.||¢5c : L?(BC) — R defined as
1 1
1/ llg.pc = E(Il.ﬁ I3+ 1£2113)2
is a complete norm on L?(BC) follows easily from Lemma 2.3.

Remark 2.8. If ¢(z) = |z|” for p > 1, we obtain the bicomplex version of the Lebesgue
spaces LP.

Now we give some examples of linear operators:

Definition 2.9. Let 7' : Q — Q be a measurable transformation, that is, T-'(4) € ¥
for any A € X. If poT~'(A) = 0 for each A € ¥ with u(A) = 0, then T is said to be
non-singular.

Any non-singular measurable transformation T induces a linear operator Cp from L%(Q)
into itself defined by

(Crf)(#) = fol(t) = F(T(®), te®, feLQ).
Next if f = fie + foe! € L°(BC), then one can define
(Crf)(t) = froT(t)e + faoT (t)e'

Definition 2.10. Let 2 = (€2, X, i) be a o-finite complete measure space and let f = fie+
fael € L?(BC), where f; and fo are in L?. For a nonsingular measurable transformation
T : Q = Q define composition transformation Cpf = C7(fie + fael) = froTe+ fao Tef.
We say Cp is composition operator if it maps L*(BC) into itself.

Remark 2.11. Clearly one has Cr(fie + foel) = Crfre + Cpfoel.

Remark 2.12. In light of Remark 2.7, [4] and [17], it easily follows that Cp : L?(BC) —
LP(BC) is bounded if and only if Cp : LP(Q2) — LP(Q?) is bounded i.e., if and only if

poT~(A) < Mu(A),

for some M > 0 and for all A € ¥ with u(A) < oc.
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Example 2.13. Let T : N — N be defined by T'(n) = n—1. Then Cr : I2(BC) ~ I*(BC) is
a composition operator on [2(BC) defined by Cp(x1,z2,...) = (0,21, 22,...) and is called
the right shift operator.

Definition 2.14. Let § € L°(BC). Then we define a multiplication operator My :
LY(BC) — L%(BC) as
My f(t) = (6(t))(f (1)),
for all t € Q and f € L°(BC).
Remark 2.15. Clearly 6, f € L°(BC) implies that 6 = 61e + et for some 6;,0, € LO(Q)
and f = fie + foel for some f1, fo € . € LY(Q2) Therefore
0)(f)
01e + Oae) (fie + foel)
61)(f1)e + (62)(foe!)

.1"'..{ -

where My, and My, are multiplication operators on L%(Q). Therefore My is bounded on
LY(BC) if and only if My, and My, are bounded on L°((2) i.e., if and only if 61, 62 € L>(£2).

Lemma 2.16. Let 1 < p < oo. Then the sequence of unit vectors {ei,ea, es, ...}, where
er = Ox; is a Schauder basis for IP(BC).

Proof. For any z = {z,} € IP(BC),

n
||z — Z zrekll = [{Zn+1; Tnt2, Tnis, .- |
k=1
(s @]
1
=( ) =)
k=n+1
(s ¢]
T P\p
= (> lemp +elapl?)?
k=n+1
00 oo 1
<(S P+ 3 e
k=n+1 k=n+1
o0 o 1
= (X lePlaalP+ 3 lefPlaial)?
k=n+1 k=n+1

— 0 asn — oc.
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Therefore z = 77 | zrey and hence {ey, ez, e3,...} is a Schauder basis for I?(BC). [ |

Theorem 2.17. The dual space of [P(BC) is [9(BC) where 1 < p < oo and % + % =1,

Proof. Since by Lemma 2.16, the sequence of unit vectors {e1, e2,e3,...}, where e}, = 0y
is a Schauder basis for I?(BC). The rest of the proof follows on the similar lines as in the
case of [P(12). [ |

Next we define modular I gc on bicomplex Orlicz space as

Isme(f) = Is(fr)e + Ip(fa)e! (2.5)

Theorem 2.18. Let f = fie + f2ef € L*(BC), where fy and fo are in L?(u).

(a) If | flgpc < J5 then Ip(fi) <1, fori=1,2.
(b) If I(f;) < 1, fori=1,2 then ||f||snc < 1.

Proof.

1 . . r
(a) Let |Ifllozc = 5(Ifl3 + /213)7 < J5. This implies that || f|3pc = 3(IIf1l3 +
If2ll3) < 3. Which yields that [|f;[|3 < 1, for i = 1,2. Therefore I4(f;) < 1, for

i=1,2.

(b) Let I4(fi) < 1, for i = 1,2. This yields that ||fil|s < 1, for i = 1,2. Therefore
1
I Fllsc = S5 (IAIE + 1 212)F < 1. .

A particular case of L(BC) is [*(BC) which is defined as
I'II’(IBC) ={{in 5 Tl =T e+ :cﬂ,geT € BC and {z,;}.2, € 1(C) for i = 1, 2.}

and [[{zn}|smc = %(”{Tml}”i + ||{:rn3}||fb)é The addition and scalar multiplication is

defined component wise on [?(BC).

Theorem 2.19. [?(BC) equipped with ||.||4sc is a Banach space over BC.

Proof. It is clear from the definition of addition and scalar multiplication that [(BC) is
a module over BC. It is also easy to show that ||.||ssc defines a norm on [?(BC). Now
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it only remains to show that [?(BC) is also complete with respect ||.||sc. For that let
{zk}%°, be a Cauchy sequence in I?(BC). Since for {z, = T, 1€ + 21122, we have

[{@ndlose = 5 (1{zn}I3 + [{ra2}2)?. Therefore one has

{zn,i}lo < V2

{mwv,}||¢,]BC fori = 11 2. (26)

Now for € > ( there exists r € N Such that

1zl — 2™} lope < —= for all [,m > r. (2.7)

V2

Therefore (2.6) and (2.7) yield that {z¥ ;}3¢, is a Cauchy sequence in (I?(C), ||.|[¢) for
i = 1,2. In view of the completeness of the (I?(C), ||.||s), we have that {z% ;}?° | converges

i

to some {z,;} € I%(C). Therefore for i = 1,2 there exists p; € N such that

{2, — #n,i}lle < Ve for all I > p;

Now for p = max{py,p2} and | > p one has

l p l l
{ar — zn}llg 8 = 5 (H{&n: — Znillls + {zn: — 2ni}lg)

< —(e+e)

L R

Thereby showing that {z%}?° is a convergent sequence in I?(BC). Therefore [?(BC)
equipped with ||.||src is a Banach space over C. [

Theorem 2.20. Let (2, %, 1) be a o—finite and purely atomic measure space with atoms
{A,} with measure pu(Ay) = an >0 for anyn € N. Let T : 2 — Q be a measurable trans-

3
formation with T(Q) = Q and b, = %()An). Then Cr is bounded from 1°(BC, {a,})

into itself if and only if for any {x,} in 1°(BC, {a,}), there exist scalars Ay and Xy such
that

o0

> (@(M@n1) + 0(Ao@n2) )bn < 00 (2.8)

n=1

where Ty = Ty16+ :nn__zeT.
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Proof. Suppose Cr : I°(BC, {a,}) — I?(BC, {a,}) is bounded. Therefore there exists a
k > 0 such that

ICr({zn})llgec < kl[{zn}llsBC (2.9)
for every {x,} € I?(BC, {a,}). Now set =\ and 22 for x, = T 1e + z,0e' € BC as

18711 = Ini€+ Oel
2
Lo o

z, = 0e + .'l?-n__zﬁf.

Then clearly {z}:} and {z2} belong to I¢(BC, {a,}) whenever {z,} € I*(BC, {a,}) and

i P
‘Lu,l = Tn,1, ‘L-n.,l - 0'

2 N
T2 =Y, Tna = In2.

Therefore, by (2.9), if {z,} € I?(BC, {a,}) we have
ICr({z2llspe < [{zh}Hisne

for i = 1,2. Therefore, ||{.-r:g.ﬂ(n)_1}||¢ < Vk|{z 1}|s. Consequently we have Cr :

1?({an}) ~ 1°({an}) is bounded. Therefore, by Theorem 2.6 in [4], we have \; > 0
such that

o0

) " (Aini)bn < 00 (2.10)

n=1
for i = 1,2. Now (2.10) easily yields (2.8).
Conversely suppose that (2.8) holds. Then there exists \; > 0 such that

i (Ain,i)bn < 00 (2.11)

n=1

for i = 1,2 and {x, = zp1e + zn2e’} € I?(BC,{an}). Again by Theorem 2.6 in [4],
Cr :12({a,}) = 1°({ay}) is bounded. Therefore there exists k; > 0 such that

I{zrn)i e < Eill{zni}lls-
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Therefore one has

ICr({za I3 5c = I{zrm HI3 50

1

= §(|l{mT(n),l}“$§ + ”{IT(?I)! 2}”%)
k 5 Kk ;

< S lHena} 13 + 5 1 fn2} 13

= 2} + Hzna}IB)

= k||{zn}IZ pc

where k = max {ky, ko}. Therefore Cr is bounded from [?(BC, {a,}) into itself. [ |

Definition 2.21. An Orlicz function ¢ is called an N - function if

1. ¢ is continuous.
2. ¢(x) =0 if and only if z = 0.

3. lim,_o 22 — 0.

T

4. limg_, o @ = Q.

Theorem 2.22. If E"*"(BC ={fie+ fael : f1, fo € E“‘S‘} then

1. {L?(BC) : ¢ ranges over all N - functions} C L*(BC).
2. L®(BC) = "{L®(BC) : ¢ ranges over all N - functions}.

Proof.

LIf f= fie+ frel € U{L?(BC) : ¢ ranges over all N - functions}, then f = fie +
fzet € L?(BC) for some ¢. Therefore f; and fy are in L? for some ¢. This implies
that f; and fo are in L' (). Hence f = fie + fael € L' (BC). Therefore | J{ L?(BC) :
¢ ranges over all N - functions} C L'(BC).

2. Let f = fie+ faet € L>®(BC), where f; and fo are in L>(p). Therefore f; and
fo are in L? for all ¢. This implies that f = fie + foel € L?(BC) for all ¢. Hence
f = fie + fael € ﬂ{f‘-t’(]BC) : ¢ ranges over all N - functions}. Conversely if f =
fie + f2et € N{L?(BC) : ¢ ranges over all N - functions}, then f = fie 4+ foel €
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E‘b(IB{C) for all ¢. Therefore f; and fo are in L? for all ¢. This implies that f; and fa
are in L>®(u). Hence f = fie + fae! € L>°(BC). Therefore L>(BC) = N{L*(BC) :
¢ ranges over all N - functions}.

Theorem 2.23. Let f, = fr1e+ f.,,_‘gef., n > 1 be a sequence in L?(BC) such that f, —
f = fie+ fael. Then ||f|lac < im nsoo | fullBC-

Proof. The result follows immediately from

2| £ 1Ec = 1f1lIE + 72118
Ifn,l ”?2 + hﬂ n.—mo“fﬂ,,Q“?g
< lim ?'e—+oc-(||fn_.1 ||?2 + ||fn,2||?2)

< B oo

Theorem 2.24. Let Q = (Q,X, u) be a o-finite complete measure space and T : Q — Q
be a non singular measurable transformation. Also suppose that ¢ satisfies Ao condition.
Then Cp : L*(BC) ~ L®(BC) is bounded if and only if there is a constant m > 0 such
that o T~1(A) < mu(A) for each A such that p(A) < oco.

Proof. First suppose that there is a constant m > 0 such that g o T71(A) < mu(A) for
each A such that p(A) < oo. Therefore there exists a constant k such that

2(Cr flifc = 2ICrfie + Cr f2€l|[ic
= |Crfulld + ICr oIy
< Kl flIE + Kl Il
=k2 “f”@zBD
Therefore ||Crfllac < VE||f|lzc. Hence Cr is bounded. Conversely suppose that Cr is

bounded on L?(BC). Then it follows from Remark 2.7 that Cp is bounded on L?(€) and
therefore the result follows from [4]. [
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